The Design of the Telnet Protocol
December 5, 2002
comments from vint cerf december 18, 2002
Introduction
Telnet is one of the application layer protocols of the Internet for remote access and control of heterogeneous computer systems using a terminal interface. Many popular operating systems and software implement this protocol allowing for ease of access to remote systems. It is still highly used even though it was one of the first protocols designed for the newly invented network of computers in the 1970’s, called the ARPANET. Today’s Telnet is the direct descendent of the ARPANET version, both having similar goals and functionality, and its design is important in understanding the history of the Internet and its protocols.

Even if the original ARPANET network was a “highly inhomogeneous” [the network itself was quite homogeneous but the hosts were otherwise; this is in a sense what distinguished the ARPANET from the INTERNET. The Internet had both heterogeneous hosts and heterogeneous networks. The Internet inherited some first class end/end applications in the form of Telnet, FTP and email from ARPANET and adapted them to operate over TCP/IP.] one, the researchers knew that to make the network truly practical, a software interface would be required [RFQ 1968, p 22]. One of the earliest design documents, the Request for Quotation (RFQ), given by the US Department of Defense for the construction of the ARPANET routers (known as IMPs), outlines this expectation:

Since many sites have unique facilities, we can expect rich interaction to occur, as it is only necessary to develop INTERCONNECTION SOFTWARE in order to have utilization of the power of another contractor’s system. [RFQ 1968, p 25]

The benefits of making such a network were easy to dream about, but the step of actually implementing such a system and software to control them remotely would require much effort. The main obstacle was that every computer system and operating system “tended to view [themselves]itself as the center of the universe” [RFC 1000, p 2]. How would this idea of sharing resources and remote access evolve into the Telnet protocol, as it is known today? [the grammar is not quite right. “every” is short for “every one” so it really should read “every computer system and operation system tended to view itself...”]
The State of Networking and the Struggle to Organize
In the late 1960’s, research commenced to create a network to connect the computer systems of universities and other locations in order to share their resources. It was immediately recognized that the ability to control a computer system remotely would be essential to sharing these resources. The RFQ addresses this issue:

There will be many kinds of computers involved and even in those cases where two contractors possess similar equipment, their operating systems and types of utilization will differ. On the other hand, this will be a network of important potential precisely due to [the] making these advanced research computer systems available to users outside their design circle. [RFQ 1968, p 22]

Computer systems of the 1960’s and 1970’s were very incompatible, with each one possibly having different input and output formats, operating systems, hardware, and programs. Programs were definitely not portable. There were no windows, no mice
,[I agree with Steve here – vint] and no common formats among these specialized systems. Compared to today’s personal computer, the user interface was quite primitive. The task of creating a means for communication among these highly unique systems would be a feat indeed.

Fortunately, during the time that the IMPs were under development in 1968 and 1969, some researchers were already considering the software connectivity problem.

… the hosts are seen as being heterogeneous, differing in programs and hardware… These differences are such that two hosts with identical hardware will be unlike because of differing operating systems. These differences hinder interchangeability of programs, interpretation of contents of files, and interpretation of control information.

If these differences are not overcome, the potential benefits of the network cannot be attained. The establishment of standards or of metalanguages to describe the nature of the information are but two approaches to the general network problem. Creation of specially tailored translation programs represents a solution to specific problems of incompatibility. [Shapiro 1968, p 8]

The foreshadowing of Telnet can easily be seen here and especially in this next description from the same paper by E. B. Shapiro, “A Study of Computer Network Design Parameters”, one of the very first dealing with network connectivity.

A remote user should be able to exercise some control over a remotely executing program. The program should also be able to report information as to its state of progress… Thus a user could initiate a program, stop it restart it, open various registers for purposes of examination or change, etc. [Shapiro 1968, p 14]

In 1968, this same Elmer Shapiro gathered a group of graduate students and researchers from UCLA, SRI, University of Utah, and UCSB to work on implementing the software. This informal group had good questions and ideas coupled with a thorough knowledge of the technology that gave them the motivation and skill to work on this project, even with the added time pressure of demonstrating the soon-to-be-completed IMPs [RFC 1000, p 2].

After a series of meetings, some productive, some not, the group (later known as the Network Working Group or NWG) published the first RFC in March 1969 [I thought it was April 7, 1969??], assembled by Steve Crocker, outlining their initial ideas. He documented the underlying goal of finding a host-level protocol capable of facilitating a connection between two hosts, where the remote host would act as if the user were sitting directly at that terminal. The RFC outlines some basic requirements like the use of a “TTY-like connection” and a “file-like connection” in order to facilitate a complete connection between two hosts and the need for error checking. Thus began the search for a sequence of protocols, and more specifically, the protocols that would evolve into Telnet and FTP.

Later in 1969, as the deadline drew nearer for the first IMP installment at UCLA, RFC 15 was published. This one, edited by C. Stephen Carr, reads:

In addition to user program access, a convenient means for direct network access from the terminal is desirable. A sub-system called “Telnet” is proposed which is a shell program around the network system primitives, allowing a teletype or similar terminal at a remote host to function as a teletype at the serving host [RFC 15, p 1].

Here the definite step, from the use of machine primitives to control the host-to-host communication to separating the layers of machine and application, can be seen. In fact, this document outlines a simple Telnet connection and file transfer complete with possible terminal prompts and commands. However, would this proposed Telnet implementation evolve into something useable for the soon-to-be arriving IMPs?

Ad-hoc Telnet: The First Attempts at Demonstrating Remote Login (1969)
By the fall of 1969, the IMPs were operational at UCLA and SRI. There was real pressure to determine its functionality, so the researchers needed software that would demonstrate how the ARPANET would share the resources. On November 21, Bill Duval demonstrated his ad-hoc piece of software that offered a “Telnet-like connection” to SRI from UCLA’s system [RFC 1000, p 3].

Later in December, all four hosts, UCLA, SRI, University of Utah and UCSB, were connected via another ad-hoc implementation. Steve Crocker, one of the first network researchers [er, notwithstanding BBN IMP crew work for a year? Kleinrock, Roberts, Marill, ...? maybe one of the first host-level network researchers? maybe I am trying to slice this too finely... v], described the next attempt of implementing Telnet:

With the pressure to get something working and the general confusion as to how to achieve the high generality we all aspired to, we punted and defined the first set of protocols to include only Telnet and FTP functions. In particular, only asymmetric, user-server relationships were supported. In December 1969, we met with Larry Roberts in Utah, and suffered our first direct experience with “redirection”. Larry made it abundantly clear that our first step was not big enough, and we went back to the drawing board [RFC 1000, p 3].

The key idea here is that they had first designed a set of protocols that were asymmetrical. That is, there was a major distinction between the user and the server such everything about the protocols, like the connection or the commands, depended on the asymmetry. This would possibly create an inflexible, constrained set of protocols which could cause problems for future expansion.

These first attempts might seem as if they accomplished little, but the opposite was true because they showed that a better, more layered design was required to remove the host heterogeneity from the existing network. They needed to find the first abstraction to build upon. After more meetings and research, in 1970 the NWG implemented the host-to-host protocol (also known as the Network Control Protocol or NCP), which is the simplified ARPANET version of today’s TCP
.[NCP was based on many assumptions about the functionality of the underlying network; it had flow control weaknesses, etc. I would simply call it the predecessor toTCP/IP – vint] The host-to-host protocol [host-host] would become the abstraction that helped to separate the applications like Telnet from the operating system and hardware.

An important idea to remember is that these first few implementations of Telnet, in 1969, were not protocols but pieces of software implemented separately on each system and designed specifically to interact among certain systems.
 [I agree with steve, this was a protocol and we thought of it that way – protocols are implemented as software...]This was not at all like the final Telnet of today.[I think this is an incorrect assertion – the current Telnet is very much like its predecessor.] Again though, they were stepping stones to the final protocol and continued to show how important the idea of layering was and is still today.

The Old Telnet Protocol (1971 – 1973)
Why Telnet Became a Protocol
At this point, it is easy to see why Telnet became a protocol. The heterogeneity of the networked computer systems, the expanding ARPANET, and the need to share the resources of the online computer systems motivated the logical move to build upon NCP adding another layer to the short stack of protocols [RFC 137, p 3]. For instance, the ARPANET, by the end of 1970, had grown to about fourteen hosts with more installations planned, and the Network Information Center (NIC) was a library requiring some means for online access to its documents. ARPANET’s bandwidth was not even being fully utilized yet [find a reference]. Besides, this would be one of the ways to prove the ARPANET’s usefulness and it would help move the ARPANET from a research project to a viable tool. Putting users on an interactive network would also help explore “further directions for network protocol evolution” [RFC 97, p 1]. Therefore, Telnet needed to become a truly interactive, generic protocol.[Hmm – we needed Telnet so we could run software at hosts other than our own. I don’t see the NIC as having stimulated this as much as it was the RESULT of having access to different systems and services on the net – vint]

First Issues in the Effort to Standardize (Early 1971)
In the efforts to standardize Telnet as a protocol, the NWG encountered four main issues during its initial planning in the early part of 1971: consistent character set, echoing, attention or interrupt handling, and establishing the connection between two processes. These issues were introduced in RFC 97 and discussed in RFC 137 and 139 as well as “Function-Oriented Protocols for the ARPA Computer Network” [Crocker 1972]. The character set and echoing issues were directly related to the Telnet protocol while the interrupt handling and establishment of the connection dealt more with ARPANET’s transport layer (ICP and NCP).

The Need for a Consistent Character Set
Problem: Character set encodings were quite numerous and incompatible. Some encodings available then were BCD with six bits, EBCDIC that used eight bits, and of course, the well-known seven bit ASCII. In many cases, some encodings were even physically associated to the type of terminal and its keyboard mapping. The linkage to hardware cannot be ignored in this case. This made it difficult and even impossible to map certain characters from one system to another; however, the whole point of Telnet was to “make a terminal at a user site appear over the network as logically equivalent to a terminal ‘directly’ connected to the server site… The user should be able to cause generation of all codes which a server system terminal can generate” [RFC 97, p 1]. A good example of this incompatibility was (and is still today) the mapping for the end of line key, which could be represented on some systems as CR, LF or CRLF where CR is carriage return and LF is line feed (new line).
 There was also the concern for defining what the format characters like HT (horizontal tab), VT (vertical tab) and FF (form feed) would mean for local output on a given terminal. [RFC 97, pp 3-4].

Solution: The solution to this problem was to have “a standard, network-wide, intermediate representation of terminal[s]... between sites”: the Network Virtual Terminal (NVT) [RFC 137, p 4; RFC 139, p 1; RFC 318, p 6]. The NVT represented the common denominator among the terminals at this time. The NVT was defined as a “bi-directional character device” combining the abstractions of a printer, which responds to input, and a keyboard, which produces the outgoing data. The NVT would input and output the ASCII character codes and some of the ASCII control codes like FF and CR. It would also produce the Telnet control signals like SYNC and the echo control codes. Telnet data would travel across the network in the NVT format. Each system (terminal and server) would have to implement a conversion from its own characteristics to the NVT standard [RFC 318, pp 2-4].

To Echo or Not to Echo
Problem: Echo control was a big problem to solve for the Telnet protocol. Echo control had to do with determining who would echo the characters typed into the terminal. Unfortunately, as mentioned previously, terminals are far from being similar. The possible combinations were: half-duplex character-at-a-time, half-duplex line-at-a-time, and full-duplex character-at-a-time. (Half-duplex means that the terminal cannot receive input and type output at the same time and full-duplex means that the terminal can do both input and output simultaneously.) These differences, of course, affected the interpretation of character codes, the end of data streams, and interrupt handling among other issues [RFC 97, p 2, 4, 5].

Solution: The overall solution to this problem was non-trivial, since it affected the hardware as well as the software. Some systems were modified to have the ability to service all types of echoing systems [Crocker 1972, p 275]. The designers also decided to make the assumption that the terminal would do the echoing initially, since most terminals were configured for this already [RFC 137, p 5]. If the configuration needed to change due to having a different terminal, Telnet control commands like “I ECHO” and “YOU ECHO” were provided so that the user or the server could change the configuration [RFC 139, p 4- 5]. However, this would not be the last time the issue of dealing with character-at-a-time versus line-at-a-time systems would arise.

The Trouble with Server Side Interrupt Handling
Problem: Interrupt handling was a tricky but necessary issue to overcome for the Telnet implementers. Interrupt handling would be used for escaping back to the local process, as if a user typed control-Z to move a process into the background. Interrupt handling would also be used to stop a wayward process running on a remote system the way one types control-C to stop a program. Escaping back to the local system was considered only to be a terminal problem since some terminals were half-duplex and some were full-duplex. This would require coding for special cases or causing the user to wait until output was complete [RFC 97, p 5].

It became evident that the sending of interrupt control signals to the server was where the real problem lay. RFC 97 touched on this subject somewhat, but real discussion continued in RFC 103 and was further defined in later RFCs. The problem had to do with the server side buffer limits and the synchronizing the interrupt signal with the correct data bound for the server. There was a possibility, with network traffic, that the buffers on the server side could fill up and the interrupt signal dropped or lost in the data. Everything would come to a halt since the server would not receive data and the signal could not get through to it. The other issue of synchronizing data with the interrupt signal arose because the transport protocol NCP provided no way to notify the remote server that a specific control signal corresponds with certain data. Telnet understandably was at the mercy of NCP, so the problem also occurred at the Telnet level as well [RFC 103, pp 1-2 and RFC 139, pp 7-9].

Solution: The solution to this interwoven problem of interrupt control signals would be to use NCP’s control signals to switch the server from accepting data in normal mode to handling the data in a special way to find control information, even if it meant dropping some data to find the signals. RFC 103 first described that using NCP’s INS control signal to alert the server of the interrupt signal’s coming [p 2]. RFC 139 gives an example of this usage on page 8. Finally, [Crocker 1972] on page 276 gives the solution for switching back the server to normal mode using the special Telnet SYNCH command. This solution in general would relieve the user from having to know the server’s implementation for handling special interrupts since the INS signal is accepted by all servers that implemented NCP.

Making the Telnet Connection
Problem: Telnet was defined in 1971 as a “third level protocol” meaning it was implemented on top of NCP (Host-to-Host protocol) which was above the Host- IMP protocol [RFC 97, p 7 and RFC 137, p 3]. In 1971, there were no well-defined port numbers as there are defined today. For instance, today’s Telnet uses server port 23 to connect to the remote system because this is the port that the server Telnet process is listening on in order to accept a connection from a client. The Host-to-Host protocol (that is, NCP) provided many sockets (the ARPANET’s term for “port”) for connecting two hosts on the network, but the question remained of how to connect the user Telnet process with the server Telnet process using the second layer protocol [Crocker 1972, p 276]. How would the two processes find each other?

Solution: Inside the Host-to-Host protocol, there existed ICP (Initial Connection Protocol).
 This protocol provided the way to start the connection and coordinate the two Telnet processes. Here is the procedure taken from [Crocker 1972] on page 276:

1. Connection is initiated from a user-TELNET’s receive socket to a serving HOST’s socket 1 (a send socket).
2. When the initial connection is established, the serving HOST sends a generated socket number and closes the connection. This socket number identifies an adjacent socket pair at the serving HOST through which the user-TELNET can communicate with a server-TELNET.[perhaps worth pointing out that each host-host connection was simplex? necessitating a pair to achieve full duplex communication. TCP changed that.]
3. TELNET connections are then initiated between the now specified pairs of sockets. Two connections are used to provide bi-directional communication.

There was one well-defined port at socket 1 where the client would initially connect. The server would define for the client and itself two sockets that Telnet would use for bi-directional communication, so the client would disconnect from socket 1 and reconnect at the new socket addresses. RFC 97 gives an example of this connection sequence using ICP on page 6, and it also references RFC 80 for the ICP specification of 1970.

The Necessity of the Network Virtual Terminal
Telnet was on its way to becoming a protocol for the ARPANET. The researchers had outlined some of the basic requirements early in 1971 for Telnet; however there was still the problem of interfacing the different kinds of systems on the network. Just specifying the character set was not enough to abstract away the heterogeneity of the numerous systems and terminals. Control functions for the remote server like interrupting a process and terminal functionality for the user like half-duplex or full-duplex were very numerous and different for these systems. Later this became known as the N² problem (also known as the N x M problem [RFC 871, p 3]) where each of N kinds of terminals on the systems would have to communicate with N (or M) other kinds of terminals on different systems [Walden 1975, p 296].

The NVT philosophy of Telnet was one way to solve the N² problem, but there were other design alternatives to the N² problem among the computing systems that were considered during the early 1970’s. Specifically for Telnet, one other solution existed that would have required the using site to keep a mapping of codes from its site to other serving sites. This would have become unreasonable to update the tables of data for each new host added to the network [RFC 139, p 1; RFC 318, p 7]. Another similar idea was that of providing some network programming language that would specify how to translate from one system to another or from one system to some network-wide standard. Some very early ideas were a network-wide language for consoles [Carr 1970, p 595], the Network Interface Language (NIL) [Carr 1970, p 596] and the Decode-Encode Language (DEL) [RFC 5]. The differences between the DEL/NIL approach and the NVT philosophy were mainly that the languages were not protocol specific and would make all hosts on the network appear the same, in most respects, for whatever network interaction the user would require
. One other protocol developed was called the Data Reconfiguration System (DRS).
This obviously dealt with making network data appear the same to all hosts. The implementers felt that “the Network should adapt to the individual program requirements rather than changing each program to comply with a standard” [RFC 166, p 1]. There were two basic parts: the form compiler and the interpreter. The form compiler would specify the translation from on data type to another, and the interpreter would do the actual work of reconfiguring the data as it was sent over the network [RFC 166, p 2; Cerf 1970, p 558]. [we only worked on paper designs for DRS – as far as I can recall we did not implement even an experimental version – vint]These languages were not pursued past the experimental stage due mainly to the fact that the philosophy behind the NVT was so much more simple and sensible than any of the other possibilities. It held to the “principle of least mechanisms” and did not require inventing some other “incomprehensible” language to describe the translation required between different systems
[Padlipsky 2002]. In fact the NVT-idea was used again when a Network Virtual File System was created for FTP.

More exploring: RFC 5, RFC 139, RFC 166, RFC 318, RFC 871, The Design of the File Transport Protocol

The Experience with Old Telnet (1973)
Since 1971, many hosts had implemented some sort of program to allow remote logins and interactive use of a remote system, whether it was a version of the Telnet protocol resembling what was given in RFC 318 or an ad-hoc version designed for a specific type of system. While these versions were successful in determining that the ARPANET would indeed be useful and important to the computing world, the NWG was busy trying to specify the standard Telnet protocol. There were disagreements over many details of what this protocol should allow, like having a standard and a minimal implementation or allowing Telnet to switch between the ASCII character set and other encodings. In addition to these details, many had experienced some problems with this first version of Telnet. The main problems were the asymmetrical control structure, the lack of expansion for its set of commands and options, and the difficulty of interfacing line-at-a-time and character-at-a-time systems. These issues led to a large overhaul of the existing version of the Telnet protocol, as the implementers rethought their first design, so demanding the distinction of “old” and “new” Telnet protocols.

Asymmetrical Control Structure
Even back in the early part of 1971, the designers were wanting to provide the Telnet protocol with the idea of allowing different kinds of connections, so that Telnet processes could communicate between a pair of servers, between a terminal and a server, or even between two terminals. It would be the case that the side which initiated the connection, would still be the "using host" and the other side the "serving host" [Padlipsky 2002]; however there would be no distinction at what was driving the Telnet processes, whether it could be a user on a terminal or another program running on some server. This idea later became known as "symmetry". (See RFC 137, p. 8, RFC 139, p. 2, RFC 318, p. 8, and RFC 435, p 2, 5).

In 1973, the TENEX group and in particular Thomas, Burchfiel and Tomlinson, pointed out that there was a problem with the semantics of the command structure because, even though Telnet was trying to be symmetrical, the meanings of the command structure were not symmetrical. A good example of this mismatch occurred when trying to enable or disable echoing from one side of the connection [RFC 435, p 5]. The problem was further enhanced when the Telnet design group decided to add a new command called HIDE-YOUR-INPUT to cause the terminal to cover up the input when typing a password. They recommended using the NO ECHO command to disable the mode, which was not a symmetrical use of that command at all [RFC 318, p 3]. As given in the table, the meanings of the echo commands could be confusing, and they “implicitly assume that both the server and the user know who is which” [RFC 435, p 4]. It is ironic that the echoing problem would illustrate the short-comings of the Telnet control structure thereby requiring a new design.

	The Telnet Echo Control from RFC 318 (p 3)

	
	User-to-Server
	Server-to-User

	NO ECHO
	Asks the server to not echo transmitted data
	States that the server will not echo the transmitted data; sent only as a reply to ECHO and NO ECHO or to end the hide your input.

	ECHO
	Asks the server to echo the transmitted data
	States the server will echo the transmitted data; sent only as a reply to ECHO or NO ECHO.

Little Room for Expanding the Number of Control Functions and Options
Originally, Telnet required that the control functions be specified by the codes using the eighth bit, left unused by the ASCII character set [RFC 318, p 3]. As suggestions for additional control functions came, more codes would be required to specify these new commands. The designers foresaw that Telnet could be very customizable with the allowance of new options as well, but the space of less than 129 codes for new commands and options was limited indeed. A new way to describe them would be required soon, especially as the control structure was being redesigned.
seems to me a major element has been left out: namely the Will-Won’t-Do-Don’t command formulation. I think Dave Walden articulated it first but perhaps I am only remembering a very clear documentation of the concept written by Dave. The whole Interpret As Command (IAC) escape should be described.
Is it planned to do a New Telnet document also??
The Problem with the Character-at-a-Time and Line-at-a-Time Hosts
As mentioned previous, character-at-a-time and line-at-a-time systems were very difficult to interface. Character-at-a-time systems transmitted after each character was typed, and line-at-a-time systems buffered an entire line before sending the data. Problems would arise when the terminal was working in line-at-a-time mode, but the user would need a response from the server before the finishing the line. Another good example of the complexity of this situation is given in RFC 393 in which Joel M. Winett attempts to explain the necessity of the REVERSE BREAK control function for the NVT. It illustrates how the old Telnet was seriously lacking in control with respect to the different kinds of terminals. It seems that with the old Telnet a special command would be required for every kind of control function just to handle the two cases of data transmission. Both sides of the connection would need to agree to use either line-at-a-time or character-at-a-time mode for communication to be effective – something which the old Telnet did not allow.

Sources
[Carr 1970] C. S. Carr, S. D. Crocker, V. G. Cerf, “HOST-HOST communication protocol in the ARPA network” Spring Joint Computer Conference, 1970.

[Cerf 1972] V. G. Cerf, E. F. Harslem, J. F. Heafner, R. M. Metcalfe, J. E. White, “An Experimental Service for Adaptable Data Reconfiguration” IEEE Transactions on Communications, Vol Com-20, No. 3, June 1972.

[Crocker 1972] S. D. Crocker, J. F. Heafner, R. M. Metcalfe and J. B. Postel, “Function-oriented protocols for the ARPA Computer Network,” Spring Joint Computer Conference, 1972.

[Padlipsky 2002] Interview with M. A. Padlipsky, November 14, 2002.

[RFC 1] S. Crocker, “RFC 1: Host Software,” April 7, 1969.

[RFC 5] Jeff Rulifson, “RFC 5: DEL” June 2, 1969.

[RFC 15] C. S. Carr, “RFC 15: Network Subsystem for Time Sharing Hosts,” September 25, 1969.

[RFC 97] John T. Melvin and Richard W. Watson, “RFC 97: A First Cut at a Proposed Telnet Protocol,” February 15, 1971.

[RFC 103] R. B. Kalin, “RFC 103: Implementation of Interrupt Keys,” February 24, 1971.

[RFC 137] T. C. O’Sullivan, “RFC 137: TELNET Protocol,” April 30, 1971.

[RFC 139] T. C. O’Sullivan, “RFC 139: Discussion of the TELNET Protocol,” May 7, 1971.

[RFC 166] B. Anderson, V. Cerf, E. Harslem, J. Haefner, J. Madden, B. Metcalfe, A. Shoshani, J. White, D. Wood, “RFC 166: Data Reconfiguration Server – An implementation Specification”, 25 May 1971.

[RFC 318] Jon Postel, “RFC 318: Telnet Protocol” April 3, 1972.

[RFC 435] B. Cosell, D. Walden, “RFC 435: TELNET Issues”, January 5, 1973.

[RFC 871] M. A. Padlipsky, “RFC 871: A Perspective on the ARPANET Model”, September, 1982.

[RFC 1000] J. Reynolds and J.Postel, “RFC 1000: The Request For Comments Reference Guide,” August, 1987.

[RFQ 1968] Defense Supply Service – Washington, “Request for Quotation (RFQ) No. DAHC15 69 Q 0002,” July 29, 1968.

[Shapiro 1968] E. B. Shapiro, “A Study of Computer Network Design Parameters,” December, 1968.

[Walden 1975] D. C. Walden, “Host-to-Host Protocols” Computer Systems Division, BBN, 1975.

�Actually, Englebart’s system had a mouse, which we were well acquainted with. They obviously weren’t ubiquitous, and there weren’t any instances in the initial network of trying to use a mouse to control a remote system, but the concept was certainly visible to us from the very beginning.

Similiary, although windows, per se, didn’t exist, graphical user interfaces were definitely in existence and were very much in our minds.

�I would phrase this a bit differently. The Host-Host protocol – I think I wrote it that way, not host-to-host, but it’s not important -- was indeed the predecessor of TCP. They fit into the protocol stack in the same way and fulfilled the same function, viz an ordered stream of bit or bytes over the packet-switched network. Host-Host was simpler than TCP only to the extent that TCP had more functionality. In other respects, TCP was actually simpler.

Simplification, i.e. ways in which TCP is simpler than Host-Host, not the other way around:

The unit of transmission is a byte in TCP, not a bit.

The flow control is simpler. Only bytes are counted.

Different means of signally an interrupt.

Added Functionality:

Checksums, error detection and retransmission.

Check with Vint and others for a more complete picture.

�I always thought of Telnet as a protocol, not (merely) “pieces of software.” I don’t understand the distinction you’re trying to make. It wasn’t, in the early days, a very complicated protocol, but we viewed that as a good thing, not something that reduced its status.

�The reasoning in this paragraph feels odd to me. I have not gone back to read RFC 97, but it doesn’t feel right to think of the NIC as a stimulus for Telnet. And FTP was probably more relevant for accessing the NIC archives than Telnet.

�I think there was also a distinct “new line” character, usually abbreviated NL, that was distinct from CR or LF. Also, you might note for your readers that when you write CRLF, you mean two characters were used. That adds up to four distinct possible representations for the end of a line, CR, LF, CRLF, and NL. I don’t remember the ASCII codes for each of these; it might be worth including for completeness.

�I’m not sure this is quite precise enough. There were differences among terminals and there were differences among host systems. Some terminals were hard-wired to echo whatever was typed. On others the user could type a character and it wouldn’t necessarily echo. On some of these terminals it was possible to turn on local echoing.

The host systems had related but different differences. Some hosts expected to echo their input, and they obviously expected the terminal not to echo locally. Other hosts expected the terminal to echo locally and they did not echo their input.

The hosts which did echo could sometimes be configured not to echo, thus facilitating use by terminals which always echoed.

Just based on the above, there were four possible pairings. Only two of these pairings would work, a non-echoing terminal interacting with an echoing host, and an echoing terminal interacting with a non-echoing host.

The above description doesn’t cover all the possibilities though. In addition to the terminal itself and the remote host, the local host could also echo characters. Thus, a non-echoing terminal could still appear to the remote host as an echoing terminal if the local host echoed the incoming characters. There were thus eight possible combinations, with plenty of room for confusion.

As a separate matter but intertwined with the echoing arrangement was the matter of character-at-a-time systems versus line-at-a-time systems. Some hosts processed each input character as it was received and could take distinct and interesting actions with each character. Other hosts only accepted full lines, terminated with either carriage return, line feed, both or the new line character. Line-at-a-time systems were less flexible but more efficient for both the host and the network. On the network side, it wasn’t necessary to send each character as soon as the user typed it. The local host could accumulate the characters until there was a full line, and then it would send the entire line. Of course, the local host had to know that it was ok to delay sending these characters. If the local host thought it was talking to a line at a time system, but it was really talking to a character-at-a-time system, the user might type a character and wait indefinitely for a response that might never come.

These two settings, which element would echo the user's input and whether to queue up characters untl full line had been accumulated, were essential parts of the Telnet design from the beginning.

It was common for line-at-a-time systems to be non-echoing, but this paring wasn’t universal.

�This description entangles two related concepts. In time-sharing systems of that era, there was indeed interrupt characters on almost every system. Control-C and Control-Z were two of the common choices, but they weren’t the only ones. And their effect depended on the host. In some cases, an interrupt character killed the process, inter other cases it merely paused its execution and put it to sleep, and in yet other cases the interrupt character simply caused the return of some status information. Some hosts supported multiple interrupt characters for different purposes.

The problem posed by the Internet – the Arpanet in those days – was the delay and queuing introduced by the network. If a user program were broken or in a loop and not processing its input, and if the user had typed ahead and then typed an interrupt character, the interrupt character might be stuck in the queue and never reach the remote host. We needed a way for the local host to signal the remote host that the user had typed an important character, and the remote host should drain the input queue to find the important character.

The solution was to provide a minimal service in the Host-Host protocol that simply forwarded a signal, something akin to a pulse, to the remote host, to mean there is something buried in the stream that needed attention.

�This really wasn’t inside the Host_Host protocol. It was a separate protocol running on top of Host-Host protocol.

�The NIL and DEL ideas were intended to provide flexible and responsive front ends. The tables were simpler translators. It wasn’t a matter of being “protocol specific.”

�I believe DRS was part of file transfer and was batch oriented. I don’t believe it was related to Telnet.

�Well, the DEL/NIL idea may have seemed unnecessarily complicated at the time, but Java and ActiveX are the successful versions of those ideas in the current era.

